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Motivation

• Communication network

• Propagation of genetic information

• Generalization of Markov chain to trees

• Statistical physics on a Cayley tree / Bethe lattice

• Optimization problems and error correcting codes: locally tree-like net-

works

• Spin glass phase
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Communication channel

Message from alphabet, e.g. x, y ∈ {1, . . . , q}
Broadcast x→ y: probability π(y|x).
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Example “Ferromagnetic Potts channel”:
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{
1− ε if y = x

ε
q−1 < 1− ε otherwise
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Broadcast x→ y: probability π(y|x).
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(y|x)π

Example “Ferromagnetic Potts channel”:

π(y|x) =

{
1− ε if y = x

ε
q−1 < 1− ε otherwise

= 1
q−1+eβ exp (βδx,y)

Noise level in the channel: T = 1/β (related to ε by e−β = ε
(q−1)(1−ε))

ε ∈ [0, q−1
q ]; Larger ε → Higher temperature.

(’Antiferromagnetic’ channel: ε ∈ [q−1
q , 1]. ε = 1 → proper coloring)
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Information on the boundary about the root

Broadcast: generates a boundary configuration B.

Reconstruction: Does B contain some information on the letter sent

from the root, in the large ` limit?

Potts channel broadcasted from x0 = 1:

ψ` =
∑

B Pbroadcast(B|x0 = 1)P (x = 1|B)− 1
q.

Reconstruction possible iff lim`→∞ψ` > 0.

Phase transition (Mossel):

Rec. possible for ε < εr (i.e. T < Tr), impossible for ε > εr
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Reconstruction versus “census reconstruction”

• Single variable on the boundary: correlation with root decays as e−c`

when `→∞, as soon as β <∞.

• Census reconstruction: information contained in the number of boundary

sites with x = 1?

• Reconstruction: information contained in the full boundary pattern?
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A simple upper bound: ferromagnetic transition

Fully polarized boundary, x = 1 on all sites.

Reconstruction. Shell n: probability η(n)(x) = (1−an)δx,1+ an
q−1(1−δx,1).

Mapping: an−1 = F (an)
Boundary condition a` = 0.

Fixed point a = q−1
q .

Attractive iff ε > εF = q
q−1

k−1
k
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1

If T > TF no correlation of center with B → reconstruction impossible
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Kesten-Stigum lower bound (1966)

Shell n: kn variables. Assume xn k
n are in state x = 1.

xn+1 k
n+1 =

xn kn+1∑
i=1

ui +
(1−xn) kn+1∑

j=1

zj

ui =
{

1 probability 1− ε

0 probability ε

zj =

{
1 probability ε

q−1

0 probability 1− ε
q−1



Kesten-Stigum lower bound (1966)

Shell n: kn variables. Assume xn k
n are in state x = 1.

xn+1 k
n+1 =

xn kn+1∑
i=1

ui +
(1−xn) kn+1∑

j=1

zj

ui =
{

1 probability 1− ε

0 probability ε

zj =

{
1 probability ε

q−1

0 probability 1− ε
q−1

Large n: P (xn) ∼ Gaussian

E(xn) ∼ 1
q + C

∣∣∣1− ε q
q−1

∣∣∣n



Kesten-Stigum lower bound (1966)

Shell n: kn variables. Assume xn k
n are in state x = 1.

xn+1 k
n+1 =

xn kn+1∑
i=1

ui +
(1−xn) kn+1∑

j=1

zj

ui =
{

1 probability 1− ε

0 probability ε

zj =

{
1 probability ε

q−1

0 probability 1− ε
q−1

Large n: P (xn) ∼ Gaussian

E(xn) ∼ 1
q + C

∣∣∣1− ε q
q−1

∣∣∣n√
E(xn

2)− [E(xn)]2 ∼ C ′k−n/2



Kesten-Stigum lower bound (1966)

Shell n: kn variables. Assume xn k
n are in state x = 1.

xn+1 k
n+1 =

xn kn+1∑
i=1

ui +
(1−xn) kn+1∑

j=1

zj

ui =
{

1 probability 1− ε

0 probability ε

zj =

{
1 probability ε

q−1

0 probability 1− ε
q−1

Large n: P (xn) ∼ Gaussian

E(xn) ∼ 1
q + C

∣∣∣1− ε q
q−1

∣∣∣n√
E(xn

2)− [E(xn)]2 ∼ C ′k−n/2

→ Census reconstruction possible if ε < εKS = q−1
q

√
k−1√

k

Th (Mossel Peres): Threshold for census reconstruction is εKS
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Some known results on the threshold Tr
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Some known results on the threshold Tr

Reconstruction

Census reconstr.

T

T

T
F

0

?

T
KS r

TKS given by: k |λ2(π)|2 = 1, TF given by: k |λ2(π)| = 1

TKS ≤ Tr ≤ TF

For q = 2: Tr = TKS (Bleher et al 95)

For q large enough: Tr > TKS (Mossel Peres 02)
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New results (any tree, any channel)

• Reconstruction threshold Tr coincides with the dynamical (replica sym-

metry breaking) spin glass transition for an associated statistical physics

problem

• Numerical procedure → locate Tr with good precision

• Variational principle → new rigorous bounds on Tr (proven for antiferro-

magnetic -or in general ’frustrated’- channels)
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New results: examples

Ferromagnetic Potts

Numerically: Tr = TKS for q = 3, 4 and k ∈ [2, 30]

Tr > TKS for q ≥ 5, k ≥ 2
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New results: examples

Ferromagnetic Potts

Numerically: Tr = TKS for q = 3, 4 and k ∈ [2, 30]

Tr > TKS for q ≥ 5, k ≥ 2

Antiferromagnetic Potts (coloring)

Numerically: Reconstruction in the noiseless limit (proper coloring) is

possible only if k ≥ k∗(q), with k∗(3) = 5, k∗(4) = 8, k∗(5) = 13, . . .

Tr = TKS for q = 3 and k ∈ [5, 20]

Tr > TKS for q ≥ 4, k ≥ k∗(q).

Rigorous: k∗(4) ≤ 8, k∗(5) ≤ 13. Discontinuous transition (Tr > TKS)

for q = 4, k ∈ [9, 15], for q = 5, k ∈ [13, 20], for q = 6, k = 20.
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Reconstruction from a given boundary: recursion

Given a boundary:

η(y) = 1
z({ηi})
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yi=1 π(yi|y) ηi(yi)
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Reconstruction from a given boundary: recursion

Given a boundary:

η(y) = 1
z({ηi})

∏k
i=1

(∑q
yi=1 π(yi|y) ηi(yi)

)
z({ηi}) ≡

∑q
y=1

∏k
i=1

(∑
yi
π(yi|y) ηi(yi)

) 1 2

1 2η η

y y

y

η

y

Mapping η = F(η1, . . . , ηk)

Boundary B fixed by broadcast: ηi(yi) = δyi,y
B
i

when i is a leaf.

Iterate from boundary to the center.
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Statistics on the boundaries

For a given boundary B, on each site i of the tree, probability ηB
i ,

obtained by iteration from boundary to center.

NB: Link to Potts partition function Z(y,B) =
∑
{yi}

∏
(ij)∈E π(yi, yj):

Broadcast: Pbroadcast(B|y) = Z(y,B)

Reconstruction: ηB
i (y) = Z(y,B)P

y′ Z(y′,B)



Statistics on the boundaries

For a given boundary B, on each site i of the tree, probability ηB
i ,

obtained by iteration from boundary to center.

NB: Link to Potts partition function Z(y,B) =
∑
{yi}

∏
(ij)∈E π(yi, yj):

Broadcast: Pbroadcast(B|y) = Z(y,B)

Reconstruction: ηB
i (y) = Z(y,B)P

y′ Z(y′,B)

When B is generated randomly from broadcast (starting from a root

fixed to x0) → probability distribution Qx0(η) of η on the root.

Qx0(η) =
∑

B Z(x0, B)
∏

x δ
(
η(x)− Z(x,B)P

x′ Z(x′,B)

)
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Functional recursion

+1 l

x x

x
1

x

x
1 x2x

2

nn

Q(n+1)
x (η) =

∑
x1...xk

k∏
i=1

π(xi|x)
∫

δ [η − F(η1, . . . , ηk)]
k∏

i=1

Q(n)
xi

(ηi)d[ηi]
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The spin glass fixed point

Symmetry property: Q
(n)
x (η) = q η(x) Q̂(n)(η) and Q̂(n)(ησ) = Q̂(n)(η)
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The spin glass fixed point

Symmetry property: Q
(n)
x (η) = q η(x) Q̂(n)(η) and Q̂(n)(ησ) = Q̂(n)(η)

Recursion for Q̂:

Q̂(n+1)(η) = qk−1
∫
z({ηi}) δ [η − F(η1, . . . , ηk)]

∏k
i=1 Q̂

(n)(ηi) d[ηi]

Fixed point:

Q̂∗(η) = qk−1
∫
z({ηi}) δ [η − F(η1, . . . , ηk)]

∏k
i=1 Q̂

∗(ηi) d[ηi]

Spin glass phase (“1-RSB”): exists iff there is a non-trivial symmetric fixed

point.

Th: Reconstruction is possible iff there is a spin glass solution Q̂∗
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Numerical approach

To obtain Tr: Solve the fixed point equation

Q̂∗(η) = qk−1
∫
z({ηi}) δ [η − F(η1, . . . , ηk)]

∏k
i=1 Q̂

∗(ηi) d[ηi]

by a ’population dynamics’ (∼ Monte Carlo) method.

Results
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Variational principle

“Complexity” of a distribution Q̂:

Σ(Q̂) = k+1
2

∫
Ŵe(η1, η2) dη1Q̂(η1) dη2Q̂(η2)

−
∫
Ŵv(η1, . . . , ηk+1)

∏k+1
i=1 dηiQ̂(ηi)

where Ŵe and Ŵv are known...

Theorem: A fixed point Q̂∗ is a stationary point of Σ(Q̂).

Conjecture: If there exists a symmetric distribution Q̂ such that Σ(Q̂) >
0, then the reconstruction problem is solvable.

Theorem: In the antiferromagnetic channel, if there exists a symmetric

distribution Q̂ such that Σ(Q̂) > 0, then the reconstruction problem is

solvable.
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Practical use of the variational principle

Compute Σ within some restricted subspace. Define e.g. Q̂µ which

attributes equal weight 1/q to the q points η = γ(x), x ∈ {1, . . . , q}:

γ(x)(y) =
{

1− µ if y = x,

µ/(q − 1) otherwise.
and Σ(µ) = Σ(Q̂µ).
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Practical use of the variational principle

Compute Σ within some restricted subspace. Define e.g. Q̂µ which

attributes equal weight 1/q to the q points η = γ(x), x ∈ {1, . . . , q}:

γ(x)(y) =
{

1− µ if y = x,

µ/(q − 1) otherwise.
and Σ(µ) = Σ(Q̂µ).

SG

Example: ferromagnetic Potts, k = 2, q = 7
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Ferromagnetic Potts, k = 2, q = 7: plot of −Σ vs µ:

.250

.256

k = 2, q = 7. ε = 0.250, 0.253, 0.256.

First order transition: εKS found by dΣ
dµ(µ = (q − 1)/q) = 0

εKS = 0.2510513..; εvar = .25369...; εr ' .25432
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Results for the ferromagnetic Potts channel

εr/εKS as a function of q, for k = 2

Squares: εr(k, q). Crosses: variational lower bound.
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Spin glass theory on a tree 1

Broadcast: generates an equilibrium configuration of the Potts model

with free boundary conditions.

Reconstruction: given the boundary B obtained from the broadcast, the

conditional probability of the variable on the root, P (x|B), is also given by

Boltzmann’s measure for the Potts model. But B creates some frustration



Spin glass theory on a tree 1

Broadcast: generates an equilibrium configuration of the Potts model

with free boundary conditions.

Reconstruction: given the boundary B obtained from the broadcast, the

conditional probability of the variable on the root, P (x|B), is also given by

Boltzmann’s measure for the Potts model. But B creates some frustration

Spin glass on a tree: frustration only through boundary conditions.

Simple Ising spin glass model (Chayes, Chayes, Sethna, Thouless 1986):

fix each spin on the boundary to ±1 with probability 1/2. But no RSB, no

real spin glass phase.
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Spin glass theory on a tree 2

Other boundary condition:
∏

i∈{ leaves} ηi(xi), but with correlated ηi:

P({ηi}) =
1

ΞL
ZL({ηi})

∏
i∈leaves

Q̃(0)(ηi) ,

where Q̃(0)(η) is the uniform distribution on the q ‘corners’ of the simplex

η(x) = δx,r, r ∈ {1, . . . , q}



Spin glass theory on a tree 2

Other boundary condition:
∏

i∈{ leaves} ηi(xi), but with correlated ηi:

P({ηi}) =
1

ΞL
ZL({ηi})

∏
i∈leaves

Q̃(0)(ηi) ,

where Q̃(0)(η) is the uniform distribution on the q ‘corners’ of the simplex

η(x) = δx,r, r ∈ {1, . . . , q}

→ functional recursion: identical to the one found in reconstruction

If Q̃(0) = Q̂∗, this model is statistically invariant by translation (provided

rooted tree → regular Cayley tree): The properties of a spin don’t depend

on its shell.
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Spin glass theory: Bethe lattice

Traditionally, “Bethe lattice” = interior of a Cayley tree

Frustrated systems: frustration from the boundary → bad definition.



Spin glass theory: Bethe lattice

Traditionally, “Bethe lattice” = interior of a Cayley tree

Frustrated systems: frustration from the boundary → bad definition.

Better definition (M+Parisi 2001): use a random regular graph with fixed

degree k + 1 on each vertex.

Local structure (from a generic point, to any finite depth) = tree.

Frustration from long loops (size of O(logN)).

This work: → Typical boundary condition from outside the tree = the

one obtained by broadcast !
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Cavity method

Analysis of Potts model on a random regular graph: cavity method →
iterative functional equations.

ηi→j(xi) = marginal distribution of xi when the edge i − j has been

cut = function of the distributions ηl→i(xl) where l are the neighbors of i

different from j.
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’Liquid’ or ’paramagnetic’ solution, uniform: ηi→j(xi) = η(xi)

Spin glass: many modulated solutions: ηα
i→j(xi). Functional Q̂∗(η)=

probability that ηα
i→j = η, when α is chosen randomly with its Boltzmann

weight. eNΣ is the number of modulated solutions (BP fixed points)



Cavity method

Analysis of Potts model on a random regular graph: cavity method →
iterative functional equations.

ηi→j(xi) = marginal distribution of xi when the edge i − j has been

cut = function of the distributions ηl→i(xl) where l are the neighbors of i

different from j.

’Liquid’ or ’paramagnetic’ solution, uniform: ηi→j(xi) = η(xi)

Spin glass: many modulated solutions: ηα
i→j(xi). Functional Q̂∗(η)=

probability that ηα
i→j = η, when α is chosen randomly with its Boltzmann

weight. eNΣ is the number of modulated solutions (BP fixed points)

(NB: spin glass phase may be hidden by a ferromagnetic state, if it exists)
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Comments

A very interesting problem!

Deep connexions to spin glasses

Using spin glass methods: → new exact results (for frustrated case) and

conjectures

Several open questions: prove variational conjecture also in unfrustrated

cases → best known bounds... Meaning of the complexity directly in the

broadcast/reconstruction problem?



Comments

A very interesting problem!

Deep connexions to spin glasses

Using spin glass methods: → new exact results (for frustrated case) and

conjectures

Several open questions: prove variational conjecture also in unfrustrated

cases → best known bounds... Meaning of the complexity directly in the

broadcast/reconstruction problem?

Ref: “Reconstruction on trees and spin glass transition”, Marc Mézard

and Andrea Montanari, J. Stat. Phys. 124 (2006) 1317-1350
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Appendix A: Proof (sketch)

Proposition: The reconstruction problem is solvable iff there is a non-

trivial fixed point Q̂∗(η)

If reconstruction solvable: Sequence of Q̂(n) converges weakly to Q̂∗(η)
which is non-trivial.

If Q̂∗ exists, non-trivial. Construct the q probabilities Q∗x(η) =
q η(x) Q̂∗(η). Use them to infer some information on the root. On a

leaf i, broadcast has generated symbol xi. Generate ηi from Q∗xi
. Given

the η’s in generation n: generate the new η’s in generation n− 1 from the

mapping η = F(η1, . . . , ηk), down to the root. For each site j, conditional

to the broadcast having produced Xj = xj, the ηj provided by the above

procedure is distributed according to Q∗xj
(Thanks to James Martin)
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Appendix B: Variational principle 1

“Complexity” of a distribution Q̂:

Σ(Q̂) = k+1
2

∫
Ŵe(η1, η2) dη1Q̂(η1) dη2Q̂(η2)∫

Ŵv(η1, . . . , ηk+1)
∏k+1

i=1 dηiQ̂(ηi)

where

Ŵe ≡ −
[P

x1,x2
η1(x1)η2(x2)π(x1,x2)P

x1,x2
η(x1)η(x2)π(x1,x2)

]
log

[P
x1,x2

η(x1)η(x2)π(x1,x2)P
x1,x2

η(x1)η(x2)π(x1,x2)

]
Ŵv ≡ −

[P
x

Q
i

P
xi

ηi(xi)π(x,xi)P
x

Q
i

P
xi

η(xi)π(x,xi)

]
log

[P
x

Q
i

P
xi

ηi(xi)π(x,xi)P
x

Q
i

P
xi

η(xi)π(x,xi)

]
.

η(x) = 1/q
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Variational principle 2

Proposition: A fixed point Q̂∗ is a stationary point of Σ(Q).

(Precisely: given any symmetric distribution Q̂, define

Σ∗(t) ≡ Σ[(1− t)Q̂∗ + tQ̂]. Then dΣ∗

dt

∣∣∣
t=0

= 0).

Proposition In the antiferromagnetic Potts channel, if there exists a

symmetric distribution Q̂ such that Σ(Q) < 0, then the reconstruction

problem is solvable.

Conjecture In any channel, if there exists a symmetric distribution Q̂ such

that Σ(Q) < 0, then the reconstruction problem is solvable.
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q k εr εKS

5 2 0.2348(1) 0.2343146
5 3 0.33881(5) 0.3381198
5 4 0.4008(1) 0.4
5 7 0.4986(1) 0.4976284
5 15 0.5955(1) 0.5934409
7 2 0.25432(5) 0.2510513
7 4 0.43325(5) 0.4285714
10 2 0.2716(2) 0.2636039
15 2 0.2881(1) 0.2733670

Table 1: Threshold for the ferromagnetic Potts channel
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q k εr εKS εvar εalg εMP I∗ Ψ∗

5 2 0.2348(1) 0.2343146 0.23491 −−− 0.30264 0.052(5) 0.0152(16)
5 3 0.33881(5) 0.3381198 0.33887 0.19047 0.41712 0.06(2) 0.016(4)
5 4 0.4008(1) 0.4 0.40081 0.29046 0.48 0.06(1) 0.020(4)
5 7 0.4986(1) 0.4976284 0.49847 0.41114 0.57143 0.07(1) 0.020(4)
5 15 0.5955(1) 0.5934409 0.59422 0.53965 0.65238 0.14(1) 0.040(8)
7 2 0.25432(5) 0.2510513 0.25369 −−− 0.34577 0.14(1) 0.028(4)
7 4 0.43325(5) 0.4285714 0.43250 0.30769 0.53909 0.195(5) 0.045(2)
10 2 0.2716(2) 0.2636039 0.26977 −−− 0.38325 0.23(2) 0.040(5)
15 2 0.2881(1) 0.2733670 0.28472 −−− 0.41652 0.37(3) 0.053(4)

Table 2: Thresholds (numerical results and bounds) for the ferro-

magnetic Potts channel. The reconstruction threshold εr satisfies

the rigorous bounds εr ≥ εKS, εr ≥ εalg, and εr ≤ ε−MP. The

conjectured variational principle would imply εr ≥ εvar.
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q k εr εKS εvar εalg ε−MP I∗ Ψ∗ Σ∗
4 8 0.99953(4) −− −− −− 0.91552 1.56(4) 0.56(1) 0.026(3)
4 9 0.9908(4) 1 0.99298 −− 0.90717 1.31(2) 0.47(2) 0.009(1)
4 10 0.9820(8) 0.9871708 0.98304 −− 0.9 1.2(2) 0.42(4) 0.005(4)
4 11 0.9725(3) 0.9761335 0.97363 0.99736 0.89376 1.07(5) 0.39(1) . 0.005
4 12 0.9643(3) 0.9665063 0.96498 0.98946 0.88826 0.26(3) 4.2(5) . 0.005
4 15 0.9431(3) 0.9436492 0.94338 0.96903 0.875 0.5(1) 0.16(3) . 0.001
4 18 0.9267(2) 0.9267766 0.92686 0.95264 0.86502 0.3(1) 0.11(4) . 0.001
5 13 0.99741(5) −− 0.99982 −− 0.92308 1.76(4) 0.59(1) 0.042(5)
5 14 0.9932(1) −− 0.99555 −− 0.91916 1.7(1) 0.54(2) 0.03(1)
5 15 0.9888(1) −− 0.99092 −− 0.91561 1.48(5) 0.48(2) 0.03(1)
5 20 0.9685(3) 0.9788854 0.96991 0.98581 0.90177 1.1(5) 0.36(2) 0.01(1)
6 17 0.999924(5) −− −− −− 0.93482 2.20(4) 0.667(15) 0.095(5)
6 20 0.9932(3) −− 0.99546 −− 0.92792 1.87(6) 0.569(15) 0.04(2)

Table 3: Antiferromagnetic, rigorous bounds: εr ≤ εKS (KS),

εr ≤ εalg (Mossel), εr ≤ εvar (M+M), εr ≥ ε−MP (Mossel Peres). 30


